翻訳と辞書
Words near each other
・ Braid (video game)
・ Braid algebra
・ Braid bar
・ Braid Burn
・ Braid discography
・ Braid group
・ Braid Hills
・ Braid My Hair
・ Braid Station
・ Braid statistics
・ Braid theory
・ Braid-breaker
・ Braided
・ Braided cheese
・ Braided fishing line
Braided Hopf algebra
・ Braided monoidal category
・ Braided Path
・ Braided river
・ Braided River (Publishing)
・ Braided rug
・ Braided stainless steel brake lines
・ Braided vector space
・ Braidfauld
・ Braidhurst High School
・ Braiding machine
・ Braidley
・ Braids (band)
・ Braids on a Bald Head
・ Braidwood


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Braided Hopf algebra : ウィキペディア英語版
Braided Hopf algebra
In mathematics, a braided Hopf algebra is a Hopf algebra in a braided monoidal category. The most common braided Hopf algebras are objects in a Yetter–Drinfeld category of a Hopf algebra ''H'', particurlarly the Nichols algebra of a braided vectorspace in that category.
''The notion should not be confused with quasitriangular Hopf algebra.''
== Definition ==

Let ''H'' be a Hopf algebra over a field ''k'', and assume that the antipode of ''H'' is bijective. A Yetter–Drinfeld module ''R'' over ''H'' is called a braided bialgebra in the Yetter–Drinfeld category ^H_H\mathcal, where the algebra structure of R\otimes R is determined by the unit \eta \otimes \eta(1) : k\to R\otimes R and the multiplication map
:: (R\otimes R)\times (R\otimes R)\to R\otimes R,\quad (r\otimes s,t\otimes u) \mapsto \sum _i rt_i\otimes s_i u, \quad \text\quad c(s\otimes t)=\sum _i t_i\otimes s_i.
:Here ''c'' is the canonical braiding in the Yetter–Drinfeld category ^H_H\mathcal is called a braided Hopf algebra, if there is a morphism S:R\to R of Yetter–Drinfeld modules such that
:: S(r^)r^=r^S(r^)=\eta(\varepsilon (r)) for all r\in R,
where \Delta _R(r)=r^\otimes r^ in slightly modified Sweedler notation – a change of notation is performed in order to avoid confusion in Radford's biproduct below.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Braided Hopf algebra」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.